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1Institute of Business Administration

2Institut für Maschinelle Sprachverarbeitung
{felix.armbrust,henry.schaefer}@bwi.uni-stuttgart.de

roman.klinger@ims.uni-stuttgart.de

Abstract

Public companies are obliged to include financial and non-financial information within their cor-
porate filings under Regulation S-K, in the United States (SEC, 2010). However, the requirements
still allow for manager’s discretion. This raises the question to which extent the information is
actually included and if this information is at all relevant for investors. We answer this question
by training and evaluating an end-to-end deep learning approach (based on BERT and GloVe
embeddings) to predict the financial and environmental performance of the company from the
“Management’s Discussion and Analysis of Financial Conditions and Results of Operations”
(MD&A) section of 10-K (yearly) and 10-Q (quarterly) filings. We further analyse the mediating
effect of the environmental performance on the relationship between the company’s disclosures
and financial performance. Hereby, we address the results of previous studies regarding environ-
mental performance. We find that the textual information contained within the MD&A section
does not allow for conclusions about the future (corporate) financial performance. However, there
is evidence that the environmental performance can be extracted by natural language processing
methods.

1 Introduction

Understanding the textual information in corporate disclosures is an important part of financial account-
ing research. It provides additional information about numerical financial data and aids the reader to
understand the managerial information sets. In addition, the manager’s communication patterns can
reveal certain behavioral traits – e.g., in case the company provides truthful and meaningful informa-
tion or if the company tries to obfuscate or withhold information. The textual information can, hence,
guide users of corporate disclosures to better understand the firm’s behavior and decisions (Li, 2010b,
p. 143–144) – in particular, when information asymmetries exist (Fields et al., 2001, p. 256). However,
corporate disclosures often tend to be boilerplate (Palmiter, 2015; Bloomfield, 2008; SEC, 2003). As a
consequence, the Securities and Exchange Commission (SEC, 2003), concerned that a substantial part
of the corporate disclosures includes generic language and immaterial detail, issued a guideline to elicit
more meaningful disclosure. In 2010, the SEC further published an interpretive release on climate change
related disclosures “to remind companies of their obligations under existing federal securities laws and
regulations to consider climate change and its consequences as they prepare disclosure documents”, (SEC,
2010, p. 6297). Therefore, the company’s disclosures should not only consist of financial narratives but
also contain information about the environmental aspects concerning the firm. Whether these corporate
disclosures are truly informative (Li, 2010a, p. 1050) or are just boilerplate generic disclosures (Wasim,
2019; Palmiter, 2015; Li, 2010b) remains an empirical question, which we address in this paper.

While in the financial domain, the financial narratives of corporate reports have been analysed with
respect to dictionary-based approaches or standard classification methods like naı̈ve Bayes (Kearney and
Liu, 2014, p. 174), little research has focused on more sophisticated methods (Gentzkow et al., 2019,
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p. 569). This equally applies for studies analysing the non-financial information1 content (Kölbel et al.,
2020, p. 8). The most common methods for analysing the non-financial, narrative information content still
remain a manual- or dictionary-based approach (Berkman et al., 2019; Matsumura et al., 2018; Reverte,
2016; Verbeeten et al., 2016; Clarkson et al., 2008; Cormier and Magnan, 2007, i.a.). Also, only few
studies concerning non-financial information focus on the actual narrative information content, and rather
address the quantity of non-financial information published (Hummel and Schlick, 2016).

In this paper, we analyse the information content of the Management’s Discussion and Analysis of
Financial Conditions and Results of Operations (MD&A) section of 10-K and 10-Q filings with respect to
the financial performance and environmental performance using a variety of natural language processing
(NLP) methods. Our contributions are that we, (1), evaluate if the MD&A section contains information
that can be used to predict financial and environmental performance in a machine learning setting, (2),
analyse if the environmental information complements the financial information in explaining the future
financial performance.2 As more than 2000 studies have linked non-financial performance to financial
performance (Friede et al., 2015), we assume that the narrative per se also contributes to the financial
performance. Hence, we directly train the classifier on the financial performance and the environmental
performance using a sentence-wise BERT- and word-wise GloVe-embedding model, instead of regressing
a certain measure on a disclosure-score previously derived from either a manually constructed word-list
or a tfidf-weighting scheme, like most other studies.

The hypothesese we discuss in this paper are: (H1) Corporate disclosures, particularly the MD&A
section, contain information regarding the company’s financial performance. (H2) Corporate disclosures,
particularly the MD&A section, contain information regarding the company’s environmental performance.
(H3) Narrative, non-financial information within the MD&A section, complements narrative financial
information in explaining the financial performance, i.e., environmental performance serves as a mediator
for financial performance.

2 Background on Financial and Non-Financial Disclosures and Related Work

2.1 Computational Linguistics in the Financial Domain

The field of computational linguistics has made enormous progress in converting text into meaningful
representations for computational use (Gentzkow et al., 2019, p. 537). Content analysis – a technique that
allows users to objectively and systematically identify specific characteristics from a text (Stone et al.,
1966) – can lead to interesting insights to transparently analyse text and provide evidence for (economic)
theories. A field of research includes the application of content analysis to efficiently examine the level of
corporate disclosures (Grüning, 2011). However, in the financial domain, applications of more recently
developed methods are rather in their early stages (Gentzkow et al., 2019). The most common methods
still remain a dictionary-based approach or comparably, straightforward naı̈ve Bayes approaches (Kearney
and Liu, 2014, p. 174) or dictionary-based methods which lack coverage.

A complementary strain of research in computer science does use state-of-the-art methods, however,
with applications in financial data which tend to primarily focus on news articles predicting stock prices
in the short-term (Mishev et al., 2019; Dodevska et al., 2019; Day and Lee, 2016; Curme et al., 2015; Li
et al., 2014, i.a.). Only recently, more advanced methods also find their way into the financial domain
(Kölbel et al., 2020; Luccioni and Palacios, 2019, i.a.).

2.2 Financial Narratives

In the United States, all public companies are required to prepare audited financial statements, which
have to be filed with the SEC and need to be accompanied by a narrative explanation to aid the users in

1While the terms business sustainability, corporate social responsibility (CSR) or environmental, social, governance informa-
tion (ESG) are often used interchangeably in the financial literature (Rezaee, 2015, p. 2), we generally refer to it as non-financial
information in this paper. However, in our specific case, we only consider the environmental aspect of non-financial information.

2Similarly suggested by Reverte (2016) and Semenova et al. (2010). Considering the direct and indirect effect of non-financial
reporting, Reverte (2016) finds that the integration of non-financial information into financial investment analysis provides a
richer understanding of the companies’ long-term performance. Further, evidence from Semenova et al. (2010) indicates that
environmental and social performance are value-relevant and complement financial information.



assessing the company’s situation (Yang et al., 2018, p. 45). The SEC had recognized that a numerical
presentation alone might be insufficient for investors (SEC, 1987).

One of the most read components of the corporate filings include the MD&A section (Tavcar, 1998). It
provides investors with a company’s long- and short-term analysis from the management’s point of view
including narratives on past performance as well as potential future prospects (Muslu et al., 2008; Griffin,
2003). This analysis should also include prospective matters, known material3 trends and uncertainties
relevant to the company (SEC, 2003).

The Regulation S-K and the SEC’s guidelines make the MD&A section mandatory. However, the
MD&A sections of the 10-K and 10-Q filings do not need to be audited (Hüfner, 2007), and the require-
ments for the MD&A section still allow for management discretion (Li, 2010a, p. 1053). Managers could
withhold unfavourable information below a critical disclosure level (Verrecchia, 1983), or provide impre-
cise information. However, companies might face litigation risk when making misleading or fraudulent
disclosures, which in turn serves as a disciplining tool (Li, 2010a; Kothari et al., 2009). As Kothari et al.
(2009, p. 1643) notes, “the disciplining forces might be less operative when disclosures are qualitative
and long-term in nature (e.g., discussion in MD&A section) rather than quantitative [...] and short-term”.

Several studies have analysed the impact of corporate disclosures with respect to the financial informa-
tion using the narrative information content: There is evidence for the disclosures affecting company’s
risk (Kravet and Muslu, 2013; Kothari et al., 2009; Li, 2006), future earnings (Moreno-Sandoval et al.,
2019; Athanasakou and Hussainey, 2014; Li, 2010a), and, ultimately, firm value (Campbell et al., 2014;
Jegadeesh and Wu, 2013; Feldman et al., 2008).4 However, nearly all previous work relies purely on a
word-count, word-phrase count or comparably, straightforward approaches. Thus, we hypothesise that
the extraction of the information content will improve by using more advanced embedding methods or
applying convolutional neural networks. While most studies tend to derive some kind of disclosure-score
from the text and subsequently regress the score on financial performance or some other measure, we
propose a deep-learning classifier being able to find relevant patterns in the text that provide conclusions
about the financial (and environmental) performance.

2.3 Non-Financial Narratives

Various surveys have shown that institutional investors value climate-relevant information (Ilhan et al.,
2019; Amel-Zadeh and Serafeim, 2018; CFA Institute, 2017) and more than 2000 studies linked non-
financial information to financial performance (Friede et al., 2015). While climate-change related factors
are also a risk to the company, manager’s awareness and proper handling represent an opportunity for
financial gain (Wasim, 2019; Jung et al., 2018).

The 2010 guideline on climate-change related disclosures highlights the importance of non-financial
information within corporate reports, often referred to as environmental, social, and governance infor-
mation (ESG) (Eccles and Stroehle, 2018; Eccles et al., 2012). The SEC mandates material factors to
be disclosed within the MD&A section, the risk factors section, legal proceedings and the description
of business (Eccles et al., 2012, p. 68). However, the principle-based approach the SEC applies makes
companies autonomously responsible to identify the relevant risks and factors. Passages that address
climate-change related disclosures are hard to identify (Luccioni and Palacios, 2019) and, thus, the
disclosure requirements have been criticized as to be lax and ineffective (Wasim, 2019; Palmiter, 2015).
Nevertheless, corporate disclosures slightly improved after the 2010 guidance (Palmiter, 2015).

The theory of discretionary-based disclosures (Verrecchia, 2001) applies to non-financial information as
well (Hummel and Schlick, 2016; Clarkson et al., 2008). Previous studies found only a small percentage
of companies explicitly mention climate-change in their annual report (Palmiter, 2015; Hirji, 2013). While
some companies are disclosing information apart from the SEC’s required disclosure regimes, these
do not substitute the SEC mandated disclosures. Without a mandatory standardized framework, not all
issuers will disclose, and a lack of reliability and comparability exists (Lee, 2020). However, authors

3Materiality refers to the relevance of an item to users of financial statements. For a more detailed discussion on materiality
see Eccles et al. (2012).

4We refer the interested reader to other publications for more details (Kearney and Liu, 2014; Loughran and McDonald,
2016; Loughran and McDonald, 2019).



have shown that voluntary, standalone non-financial disclosures are positively associated with market
value and negatively with cost of equity capital (Verbeeten et al., 2016; De Villiers and Marques, 2016;
Reverte, 2016; Plumlee et al., 2015; Dhaliwal et al., 2014; Clarkson et al., 2013).5 For 10-K forms, similar
dictionary based risk measures indicate a negative association with firm value and a positive association
with implied cost of capital (Berkman et al., 2019). As Matsumura et al. (2018) show, firms disclosing
material factors have a lower cost of equity. Kölbel et al. (2020) provide evidence that disclosures on
climate risk within the 10-K risk section affects the spreads of credit default swaps, by training a sentence-
wise BERT algorithm on sample reports from the task force on climate-related financial disclosures,
supported by humanly annotation. We, thus, hypothesize that the MD&A section provides similar valuable
information for investors, which can be retrieved by directly training classifiers on the text without human
interference.

3 Study Design and Research Methodology

Our aim is to examine whether NLP methods can capture the meaning of the MD&A section of corporate
disclosures with respect to financial and non-financial narratives. If we find evidence, this is an indicator
that such information is contained, if not, this is an indicator that this information might not be available,
which, however, would motivate future work to investigate this further. Therefore, we directly train
classifiers on the text in the MD&A section to predict financial and environmental performance.

Environmental
Performance

Text
Indep. Variable

Financial
Performance

Dep. Variable

combined path

direct path

env

Figure 1: Our model predicts financial perfor-
mance under consideration of environmental
performance.

Figure 1 elicits our approach: First, we predict
the financial performance from the MD&A section,
i.e., Direct Path. Second, we predict the environmen-
tal performance from the text, represented by path env.
Third, we build an extended model, which predicts the
financial performance from the text while also con-
sidering the (predicted) environmental performance,
i.e., Combined Path. In case all paths show a mean-
ingful relation to their labels and the Combined Path
shows an improved F1-score compared to the Direct
Path, we conclude that the environmental narrative

complements the financial narrative in explaining the financial performance.
While the company might provide information in a timely fashion through other communication

channels, e.g., ad-hoc messages, press releases and twitter posts, the MD&A section gives companies a
more comprehensive way to discuss their future prospects and operating strategy. On top, the dissemination
in the MD&A section is for free. Hence, we assume companies also provide previously released
information within their MD&A (in more detail).6 Furthermore, we assume that any material information
from sustainability reports will also be published in the MD&A section.

Nevertheless, the impact of the financial information content of the 10-K and 10-Q filings might be
quite limited since companies typically make an earnings announcement that includes information on
their earnings, cash flows, and other key performance indicators approx. three weeks before disclosing
the filings (Muslu et al., 2008; Lansford, 2006; Schrand and Walther, 2000). Hence, the majority of
quantitative information is not expected to provide much information content to investors. However, the
narrative information content probably will.

3.1 Data and Preprocessing

Our sample consists of S&P500 firms for the five-year period from the beginning of 2014 to the end of
2018 for which we are able to calculate all class labels (see Section3.2).7 To minimise survivorship bias,8

5For an overview see, for example, Verbeeten et al. (2016, p. 1363-1365).
6For a confirmation of these assumptions see Muslu et al. (2008).
7The time horizon is limited by the ESG data available on Bloomberg since for most companies the sustainability data was

not available before the beginning of 2014.
8By including only companies that were part of the S&P500 throughout the years 2014 till 2018, one would neglect poor

performing companies that did not fulfil the S&P500 criteria at any point in time during the time horizon – namely having a too



we also include all companies that were constituents at any time during the observation period. This
adds up to 615 companies under consideration, for which the 10-K and 10-Q reports were retrieved from
the Notre Dame Software Repository for Accounting and Finance (SRAF) website (McDonald, 2019;
Loughran and McDonald, 2016).9 The files taken from SRAF are the entire reports containing all sections.
We manually filter to the MD&A sections and only include the “Quantitative and Qualitative Disclosures
About Market Risk” (QQD) section in addition, due to the fact that most companies include the QQD
within the MD&A section. We opted against an automatic parsing procedure to avoid downstream errors,
which would have been possible due to some companies reporting sections titled item 7 (MD&A) and 7A
(QQD), but still include the actual content in a later part of the filing, e.g., in exhibit 13 or exhibit 99.1 –
an additional attachment to the filings (Center, 2014). We lose a total of 2815 observations due to missing
data. The final sample consists of 8772 observations (554 unique firms). The corpus includes 2.914.623
sentences and 56.063.378 tokens in total (45.872 unique tokens).10

3.2 Class Labels

As financial performance can be measured in several ways, we consider two sources for labels for
the Direct Path. The first one uses the change in earnings per share as the according label11 and the second
one uses buy-and-hold returns as the class label (Barber and Lyon, 1997, p. 344)12. While earnings do not
directly allow conclusions about the relevance of the filings to investors, it measures the informativeness
of the MD&A section, i.e., how much information is actually conveyed that affects the future financial
performance of the company. We denote this first label as ∆EPSi,q, which is calculated as the difference
in quarterly earnings previously reported and earnings published in the subsequent quarter. Here, q
is the quarterly change and i denotes to a particular firm. For the buy-and-hold returns, we use the
compounded SP500 index return, which we subtract from the contemporaneous, compounded return of
the company under consideration.13 Compared to Loughran and McDonald (2011) and Jegadeesh and Wu
(2013), who use primarily a 3-day event window for the buy-and-hold-returns, we extend the period to
30 days to match the change in environmental performance ratings. This is important for the Combined
Path, when considering the environmental narrative as well as the financial narrative. We denote the
buy-and-hold-returns as BHARi,t, which indicates how the information is perceived by investors (i again
denotes the company, t denotes the 30-day period).

To measure the information conveyed by environmental narratives, we employ ESG data from Sus-
tainalytics accessed via Bloomberg.14 The ESG data is adjusted on a monthly basis. To match the
earnings class label, we use a three-month time horizon for the environmental narrative. Hence, the first
environmental class label is the change in the ESG percentile score denoted as ∆Envi,q and calculated as
the change in the environmental percentile score over the subsequent quarter – measured by the time it
takes the company to file the next report with the SEC. Index i is again for the company i and q denotes
the quarterly change. The second class label for the environmental narrative uses a one-month change to
match the second financial class label. The calculation is done in a similar fashion as for the quarterly
environmental performance label and denoted as ∆Envi,t with i for the company and t for the day period.
We calculated the label as the difference in the previously available percentile score on the filing date and
the subsequent score available.

Again, the first class labels on financial and environmental narratives consider the quarterly change
and the second labels the monthly impact of the MD&A section. Hence, we construct a long-term and
a short-term model. While the long-term model considers the general informativeness and significance

small market capitalization in any of the years between 2014 till 2018. This would lead to logical errors and one would create
biased statistics (see e.g., Carpenter et al. (1999), Brown et al. (1992)).

9Files and pre-processing description at https://sraf.nd.edu/data/stage-one-10-x-parse-data/ (ac-
cessed 15.03.2020); unprocessed files are at https://www.sec.gov/Archives/edgar/Feed/

10The token number for BERT varies, as BERT uses its own tokenizer, see Devlin et al. (2019).
11Similar to Li (2010a).
12Similar to Loughran and McDonald (2011) and Jegadeesh and Wu (2013).
13The t-test tBHAR =

BHARi,t

σ(BHARi,t)/
√
n

showed that BHAR are significant to the 1%-significance level.
14To proxy environmental performance, other studies have also used data from KLD (today MSCI), Asset4, Viegeo Eiris, or

single emission data.

https://sraf.nd.edu/data/stage-one-10-x-parse-data/
https://www.sec.gov/Archives/edgar/Feed/


of corporate disclosures, the second model considers the informativeness of corporate disclosures with
respect to investors. We binary encode all labels, i.e., converting positive BHARi,t, ∆EPSi,q, ∆Envi,t

and ∆Envi,q to 1 and negative values to 0, respectively. The idea for the Combined Path is to predict the
environmental class label first and then using the environmental label to predict the financial label from
text.

3.3 Model Architecture and Feature Extraction

We use five different feature extraction methods and model architectures: (1) BOW: Bag-of-words in a
maximum entropy classifier. (2) TF-IDF: Bag-of-words weighted with TF-IDF in a maximum entropy
classifier. (3) GloVe: Embeddings (Pennington et al., 2014) in a maximum entropy classifier. (4) CNN:
GloVe embeddings with a convolutional neural network, following the architecture by Zhang and Wallace
(2017) (three convolutional layers, each followed by max-pooling, each with drop-out, followed by dense
layer with drop-out and a sigmoid output layer; filter sizes of 2, 3, 4; 2 filters for each length; dropout
rate 0.5). (5) BERT: BERT sentence-embeddings followed by a Bidirectional-GRU, a relu layer, an
attention layer with drop-out and a fully-connected sigmoid layer. For the BERT embeddings, we split
each document into sentences using NLTK (Bird et al., 2009), encode each sentence with the required
[CLS]-token using the BERT tokenizer and do a feed-forward pass to the BERT base network (Devlin
et al., 2019).15 The resulting [CLS]-tokens can be considered a vector representation of the sentences
(Alammar, 2019, i.a.). Due to BERT base model input length restrictions of 512-tokens (Devlin et al.,
2019), we limit each sentence to the first 200 tokens.16 For models (1), (2), (3) and (4), we remove
stop words using NLTK (Bird et al., 2009), non-alphabet characters and words that are shorter than two
characters. Since BERT can make use of sentences that are grammatically correct, we do not remove
any tokens for BERT. For all models, we use the adam optimizer (Kingma and Ba, 2015) and binary
cross-entropy as a loss function. All models are fit using 50 epochs and a batch size of 32, except for
the BERT model, which is trained for only 10 epochs. For hyperparameter optimization, we evaluate
the following settings: We use dense layers with sizes of {50, 100} for each model with an additional
dense layer and set the drop-out probabilities to a probability of {40%, 50%, 60%}. For the CNN, we
also applied both l1 and l2-regularization with regularization weights of {1, 0.1, 0.01}. The optimal
set of parameters are dense layers of size 50 and drop-out probabilities of 50%. The reported CNN
models apply 0.01-weighted l2-regularization. The size of each max-pooling window was set to 32 and
GloVe word-embeddings are of size 100. For BERT, the GRU are of size 50 and the attention layer size
is 100. The data is split into 10% test, 10% validation, and 80% training data.17 We chose the epoch
of the best performing model with the validation data. Since larger companies tend to obtain a higher
ESG-rating (Doyle, 2018, p. 9), we control path env models for size. Size is measured by the logarithm of
the market capitalization. The geographical bias is comparably small, since we only consider stocks listed
within the United States. To account for any potential industry bias, we also use the Standard Industrial
Classification (SIC) to find the according division responsible,18 which we include in path env models as
one-hot-encoded input before the sigmoid output layer. Hence, path env models include a concatenate
layer before the sigmoid layer to control for size and industry.

3.4 Evaluation

We assume that if the classifier is able to capture the meaning of the disclosures, i.e., has a high F1-
score, then the evidence that the MD&A section is associated with the class labels is consistent with the
hypotheses that managers are truthfully disclosing information in the MD&A section and that corporate
filings have information content.19 However, if the MD&A section, based on the classifier, is not associated

15For BERT, we consider a maximum of 1,000 sentences per document, as the median and arithmetic mean of sentences per
document is 270 and 332.26, respectively. We then pad each document to the same length before doing the feed-forward pass.

16To build our models, we use the Python library Keras (Chollet and others, 2015) using the tensorflow backend (Abadi et
al., 2015). To leverage the classifiers, we use the Scikit-learn library (Pedregosa et al., 2011). To implement BERT, we use the
Hugging Face transformer library (Wolf et al., 2019).

17Our python code is available at: https://github.com/ForgeFin/Fin-Env-Narrative
18See https://www.osha.gov/pls/imis/sic_manual.html (accessed 05.06.2020) for divisions.
19This is equivalent to Li (2010a).

https://github.com/ForgeFin/Fin-Env-Narrative
https://www.osha.gov/pls/imis/sic_manual.html
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Figure 2: Exemplary F1-score curve for the tfidf-classifier on ∆Envi,q and ∆EPSi,q

with the class labels, then we cannot reject the hypothesis that the MD&A section has no information
content because the result could be due to the low power of the classifier. Nevertheless, this might be an
indicator that this is eventually the case.

We compare our model’s performances to a majority baseline (i.e., always predict class 1, namely
“improving”). If a model has a substantially higher F1-score than the baseline, we are able to predict
financial and environmental improvements more precisely compared to always assuming an improvement.
In a next step, we compare the F1-score of the Direct Path with the F1-score of the Combined Path using a
Bootstrap approach. If the Combined Path – considering both environmental performance and text – is
significantly better than the Direct Path, it indicates that the environmental performance contributes to the
relationship between text and financial performance.

4 Empirical Results

Table 1 shows the results of path env, the Direct Path and the Combined Path on the test data as well as
the baseline for each classifier. All classifiers do not show a substantial improvement compared to the
baseline, meaning always guessing an improvement in environmental or financial performance performs
at least as good as a trained classifier. Hence, we plotted the F1-score for all classifiers to analyse the
results further – exemplary shown for TF-IDF in Figure 2. While the curve increases for ∆Envi,q on
the validation data (see Fig. 2a), the model does not show any meaningful increase for ∆EPSi,q on the
validation data (Fig. 2b). Both graphs show that the classifiers learn from the training data. However,
generalisation remains low as the predictive power for the validation data remains low and the F1-score
remains below the baseline. Additionally, we observe that the loss curve (not shown) declines in all
instances for the training data but the validation loss decreases only slightly for the first few epochs.
Shortly thereafter, loss increases for the validation data indicating an overfit for each model. The results
for other classifiers (not shown here) indicate a similar pattern. While there is no classifier for the earnings
or the buy-and-hold return label that shows an increasing F1-score with a decreasing loss function on the
validation data, there is a slight improvement for the long and short-term environmental performance. For
the environmental classifiers on the validation data, recall mostly improves during training while precision
remains relatively constant. This applies for both short-term and long-term environmental performance.
Even so, the classifiers remain below the baseline. For the financial performance, the classifiers do not
learn from the data. Although, the training F1-score increases for both financial labels, the results cannot
be generalized (similar to Figure 2b). This might be due to low information content, generic language or
due to our small sample. Although, the performance of all classifiers remained below expectations, we
present the Combined Path with the original environmental performance (see Table 1 Task Combined).
As could be expected from the previous results, no model proves to be better than the baseline. Further,
some models showed that the best model is indeed always guessing class 1.



∆EPSi,q BHARi,t ∆Envi,q ∆Envi,t

Model Task P R F1 P R F1 P R F1 P R F1

Baseline .53 1 .70 .49 1 .65 .44 1 .61 .37 1 .54
BOW Single .56 .89 .69 .51 .75 .61 .46 .64 .54 .40 .56 .46
BOW Combined .58 .81 .68 .51 .76 .61
TF-IDF Single .54 1 .70 .49 .63 .55 .47 .45 .46 .50 .22 .31
TF-IDF Combined .54 1 .70 .48 .59 .53
GloVE Single .54 .96 .69 .50 .89 .64 .44 .92 .59 .39 .57 .46
GloVE Combined .54 .94 .69 .49 1 .65
CNN Single .53 1 .70 .49 1 .65 .46 .51 .48 .39 .16 .22
CNN Combined .53 1 .70 .49 1 .65
BERT Single .54 1 .70 .48 1 .65 .44 .52 .48 .39 .10 .16
BERT Combined .54 1 .70 .52 .39 .44

Table 1: Model results with precision, recall, and F1, respectively. Task Single shows Direct Path and path
env for each model. Task Combined presents Combined Path for each model.

5 Analysis and Discussion

Analysing the reports revealed that the MD&A section varies largely in content and size. While 10-Q
reports are rather short and often refer to the 10-K report for more detail, the 10-K reports tend to be rather
extensive, with some reports ranging up to more than 100 pages. However, the heterogeneity of 10-K
reports make inter-comparisons quite challenging. For our sample, we could not show that the MD&A
sections have information content with respect to financial or environmental performance. Given our
sample, we cannot reject the null hypothesis for H1, H2, and H3 and, hence, conclude that the MD&A
section is not informative with respect to financial and environmental information. However, this can
be due to the low performance of the classifiers. As performance of trained classifiers could not be
generalised, it is likely that there is not sufficient, material environmental and financial information within
the MD&A section, i.e., reports tend to be boilerplate.

Analysing the top 200 weights of the tfidf-classifier, we observe that particularly for the environmental
labels the majority of words can be related to the Pharmaceutical or Chemical Industry. The top 200
weights show that for the short-term environmental performance 25 words can be related to the Phar-
maceutical or Chemical Industry (12.5%) and 41 words for the long-term environmental performance
(20.5%). Filtering for reports which include at least 5 of these words reveals that these reports are related
to the Manufacturing division (particularly SIC showing pharmaceutical preparations; surgical&medical
instruments; biological products industry etc.). This indicates that the classifier rather learns industries
instead of environmental performance, even as we are controlling for industry and market capitalization.
However, it is important to note that including at least five of these words in a report does not necessarily
result in a performance improvement. While for ∆EPSi,q 21 words can be categorized as financial words,
the top 200 words appear to be quite random for BHARi,t.

6 Conclusion

In this paper, we analysed the information content of the MD&A section with respect to financial and
environmental narratives employing various NLP methods. We proxy environmental performance with
the change in ESG rating percentile scores and the financial performance with earnings and buy-and-hold-
returns. Although, we sought to implement a model that uses the predicted environmental performance and
text to predict financial performance, results proved to be not as promising. Therefore, we implemented
the model with the original environmental performance data instead of the predicted data. We find that
our classifiers are not able to surpass a baseline model of always guessing an improvement in financial
and environmental performance. As a consequence, we were not able provide evidence that the MD&A



section has information content with respect to financial and environmental narratives, and the section
appears to be rather boilerplate. This asks for more structured reports with respect to volume and content
as well as the inclusion of more material information. However, it is clearly a limitation of this study
to focus solely on one ESG rating provider. As rating construction among providers varies, this raises
general data quality concerns (Eccles and Stroehle, 2018) and limits the generalisability of our study.
Although other information sources were neglected, corporate disclosures should be by itself useful,
informative and reliable. While one could argue that the information is already priced into stock prices
shortly after dissemination, the general information content with respect to earnings remains remarkably
low. Surprisingly, the usefulness of the MD&A section appears to be quite limited with respect to
future corporate performance. An explanation are the reports ambiguity and low polarization. As other
researchers have shown, specific word lists are more likely to capture the specific context in this setting.
Alternatively, a larger sample could overcome the distinctions of the reports for classification purpose.
Future research might use different rating providers, support the classifiers by humanly annotation, or
apply BERT models specific for the financial domain, like the recently published FinBert (Yang et al.,
2020).
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Appendix

A Data preprocessing details

For matching the environmental ratings with the filing date, we apply the following process: Reports
are usually filed sometime during the month, e.g., 11.02.2016. However, the ESG data available on
Bloomberg is adjusted on a monthly basis at the end of each month, e.g., 28.02.2016. To measure a
change in the rating data, we need to match each filing date with the previous months rating. This means a
file published on the 11.02.2016 is assigned the ESG percentile score of the 31.01.2016 – provided that a
rating exists. Subsequently, the according change in the percentile score is calculated. For reports that
were published in February 2014 or March 2014, it is likely that no prior data on the environmental rating
is available, hence, the report is not considered. This also applies to some companies that are not rated at
all.

B Label calculation

The first financial class label is the change in earnings per share. It serves as a measure of the informa-
tiveness of the MD&A section and is defined as ∆EPSi,q = EPSi,q+1 − EPSi,q, where the change in
earnings per share ∆EPSi,q is measured as the difference in the earnings reported in the next period q + 1
and the previously reported earnings for company i.

For the second financial class label, we use buy-and-hold returns and classify the 10-K and 10-Q filings
based on the sign of the buy-and-hold returns, BHARi,t =

∏t
t=0[1 + Rit]−

∏t
t=0[1 + Rmt], where Rit

and Rmt are the returns on stock i and on the SP500 index on date t. Barber and Lyon (1997) state that
BHAR are particularly suited for longer periods compared to other measures. BHAR indicates how the
information is perceived by investors.

For the first label on the environmental narrative, we use the quarterly change in the environmental
percentile score to match the according ∆EPSi,q label. The change in the percentile score can be formally
expressed as ∆Envi,q = Envi,q+1 − Envi,q, with q indicating the according quarter for company i.

The second class label on the environmental narrative uses a one months time horizon to match the
BHARi,t label. ∆Envi,t is the change in the environmental percentile score over the subsequent month,
formally expressed as∆Envi,t = Envi,t+1 − Envi,t, with the previously available percentile score being
Envi,t for company i on the filing date and Envi,t+1 being the next environmental score available.
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